
In order to examine the efficiency of a nobel real space
grid method for density functional theory (DFT) calculations,
the hydrogen bond energy of the water dimer was computed.  It
was demonstrated that the real space grid augmented by double
grid near the atomic core can yield a realistic hydrogen bond
energy curve of the water dimer. 

Density functional theory (DFT) has recently emerged as
an effcient approach for the electronic structure calculations in
the field of chemistry as well as physics.1,2 It was suggested
that DFT can yield results of comparable accuracy to MP2 cal-
culations for a series of small molecules with less expense.3 It
is therefore desirable to develop more efficient way to accom-
plish the DFT calculations.  A planewave basis coupled with a
pseudopotential is known as a successful method for such cal-
culations.4 In recent years, a method that employs a grid in real
space and finite-difference method to solve the Kohn-Sham
equation has been introduced.5,6 The real space finite-differ-
ence approach has several advantages compared with
planewave basis.  First of all, it can treat non-periodic systems
such as clusters or charged systems as well as semi-periodic
systems.  Secondly, it is straightforward to augment basis func-
tions only near the atomic core region where the pseudopoten-
tials vary rapidly.  The third is that one can drastically reduce
the number of fast fourier transformations (FFT), because only
the total electron density must be transformed by FFT and it
becomes more amenable to parallel implementations.  Finally it
should be stressed that the real space grid method is identical to
the planewave basis approach when it is applied to a periodic
system except that the Hamiltonian operation is done in the real
space.

A drawback of the real space grid is that the relative posi-
tion of an atom with respect to grid points will seriously affect
the results of the computations unless the grid spacing is narrow
enough.  That is because a pseudopotential varies so rapidly
near the atomic center that the grid points could not represent
accurately the variation of the pseudopotentials.  One of the
promising ways to conquer this problem is to prepare extremely
narrow grid points near the atomic core region, which leads to a
high degree of accuracy; however, it causes the increase of the
computational cost as well as computer storage.  Recently Ono
and Hirose proposed a quite simple and efficient double-grid
technique that requires only a modest increase of computational
cost without a loss of accuracy in the framework of the real
space finite-difference method.7 It has been shown that the real
space finite-difference method can yield potential energy
curves of the chemical bonds efficiently;5,6 however, it is still
unknown whether the method is adequate for the calculation of
potential energies of weakly bound systems or not.  In this
Letter we calculate the hydrogen bond energy of the water
dimer by using the real space grid method reinforced by the

double grid proposed by Ono and Hirose and examine the accu-
racy of the method. The results of the computations will be
compared with those of DFT calculations by Gaussian 94.8

The Kohn-Sham equation for the orbital ϕi with eigenvalue
εi of the system can be written as 

where the first term inside the parenthesis is the kinetic energy
operator, the second is the Hartree potential, the third is the
pseudopotentials of the atoms, and the fourth is the exchange
and correlation functional, respectively.  In our calculations we
employed the fourth-order finite-difference scheme to express
the kinetic energy operator of Eq. (1).5 The Hartree potential is
computed by the method in reference 9 to remove the periodic
image of the potential.  The non-local atomic pseudopotentials
are separated into a local potential and a Kleinman-Bylander
form in real space.10 The double grid technique was applied to
non-local part of the pseudopotential only near the atomic core
region, where the dense grid spacing is one-fifth of the coarse
grid spacing h.  The h is set at 0.287 au in this work. The
exchange and correlation interactions are estimated by local
density approximations (LDA).  The functional used in this
work is that proposed by Perdew and Zunger.11

In order to compute the interaction energy of the water
dimer, the molecules are placed in a cubic simulation box of
size 18.4 au.  In Figure 1 the geometry of the hydrogen bonded
water dimer is presented. Hydrogen bond energy curve is gen-
erated by varying the R( O-O ) distance in Figure 1 with other
geometrical parameters fixed.  As was pointed out in reference
12, the potential energy surface of the system is very flat with
respect to internal coordinates; therefore, these constraints have
practically no effect on the binding energy.  The interaction
energy ∆Eint is calculated by the equation,

where Edim is the potential energy of the dimer and Emono is that
of monomer.  To examine the validity of the calculations, the
results are compared with experimental value13 and those of
DFT calculations by Gaussian 94 with the same exchange and

222 Chemistry Letters 2000

Copyright © 2000  The Chemical Society of Japan

A Density Functional Study for Hydrogen Bond Energy by Employing Real Space Grids

Hideaki Takahashi, Takumi Hori, Tadafumi Wakabayashi, and Tomoshige Nitta
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531

(Received November 4, 1999; CL-990943)



correlation functional.  Two sets of gaussian basis functions are
employed.  One is the correlation-consistent polarized valence
orbital basis set of double zeta quality (cc-pVDZ).14 Another is
that augmented by diffuse functions(AUG-cc-pVDZ). 

The results are presented in Figure 2.  The experimental
value (+ mark) indicates the optimal O-O distance and the
hydrogen bond energy of the water dimer.  In reference 12, it is
shown that the O-O distance and the interaction energy opti-
mized by the MP2 calculation agrees with the experimental
value within 0.1 a.u. and 0.1 kcal/mol difference, respectively.
In this sense, the experimental value can be considered to be
highly reliable as well as the MP2 calculation.  As for the DFT
calculation of Gaussian 94 with cc-pVDZ basis functions, the
hydrogen bond energy is overestimated and the optimal O-O
length is underestimated significantly as compared with experi-
mental value.  The introduction of the diffuse type basis func-
tions greatly improves the behavior of the potential energy
curve(AUG-cc-pVDZ).  Though the stable O-O distance varies
scarecely, the depth of the hydrogen bond energy curve
becomes very shallow.  This work also overestimates the bind-
ing energy and underestimates the O-O distance as compared
with the experimental value; however, the differences are not so
serious.  There may be several reasons why the energy differ-
ence between this work and the Gaussian 94(AUG-cc-pVDZ) is
significant where the O-O distance is short.  With regard to the
accuracy of the numerical calculations, the Gaussian 94 will be
superior to this work because the spatial integrations of the
Gaussian functions are much more accurate than that of real
space grids though the double grid technique has been intro-
duced.  The other origin of the discrepancy may be attributed to
the fact that the real space grids are sufficiently prepared out-
side the atomic core regions.  As has been shown in Figure 2,
the augmentation of the diffuse type orbitals is essential for the
calculation of hydrogen bond energy in the Gaussian 94.
Spatially localized atomic basis functions are not adequate to
describe realistic behavior of the wavefunctions far from the

atomic core region.  The planewave basis has the same advan-
tage because of its delocalized nature.  As a result it would be
valid to say that the real space grid method can yield a realistic
hydrogen bond energy in comparable accuracy with the
Gaussian 94.  As for the computational cost of the real space
grid method, it increases as the square of the number of atoms
in the system (O(N2)), while that of the localized atomic orbital
basis approach scales in O(N4) when no symmetry is assumed.
Therefore, this method becomes advantageous as the number of
atoms increases.  From these calculations it was demonstrated
that the real space and finite difference method coupled with
the pseudo-potentials is adequate for the calculations of rather
weak interactions such as hydrogen bond energy within the
Kohn-Sham DFT scheme. Further it is expected that the method
will be successfully applied to the ab initio molecular dynamics
simulations15 where the hydrogen bond energy will play an
essential role.
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